MATHPAK IV Help Index

For specific information or technical support, contact Dalal Pub. Co at (408) 225-6157 from 8:00 AM to 6:00 PM PST (7 days a week). Technical support calls are free and unlimited but no collect calls will be accepted.

Below is the menu of Mathpak help.
Please click on one of the options for selection.
Commands
Calculus
Matrix
Miscellaneous

Calculus menu commands

The Calculus menu offers the following commands:
Chain Rule Solves an equation using Chain Rule.
Derivative Takes first and second deriivatives of a function.
Polynomial Determines if given two(2) functions are intersecting each other.
Trapezoidal Computes an area of a function using Trapezoidal 's rule of integration.
Simpson Computes an area of a function using Simpson's rule of integration.

Matrix menu commands

The Matrix menu offers the following commands:
Crammer Solves a system of equations using Crammer's Rule.
Gaussian Reduces a matrix to the Row-Echolen form.
Inverse \quad Finds the inverse of a matrix.
Operations Add, subtract, multiply two matrices.

Miscellaneous menu commands

The Miscellaneous menu offers the following commands:
Conversion Converts a number from one base to another.
Quadratic Solves a quadratic equation.
Trigonometry Solves a trigonometry function.
Line_Equation Finds the equation of a line given two(2) points.
Linear Eq
User Defined
GraphSetup
Solves linear equations.
Solves user-defined functions.
Changes default graph setup.

Chain Rule Help

Given an equation of the form:

$$
\square F(x)=a\left(b X^{\wedge} c+d X^{\wedge} e+f\right)^{\wedge} g
$$

Taking the first derivative of the equation using Chain Rule:

$$
F(x)=a g\left(b X^{\wedge} c+d X^{\wedge} e+f\right)^{\wedge}(g-1)\left(b c X^{\wedge}(c-1)+d e X^{\wedge}(e-1)\right)
$$

- To enter values for coefficients: Press TAB key repeatedly until the blinking bar (Cursor) moves to a desired coefficient.
- Coefficients that are left blank are considered as 0's.

■ To see the graphs of the function and its 1st derivative: Click on the "PLOT" button.

First and Second Derivatives

■ Given an equation of the form:

$$
\begin{gathered}
a x^{\wedge} b+c x^{\wedge} d+e x^{\wedge} f+g \\
F(x)=-\cdots x^{\wedge} i+j x^{\wedge} k+I x^{\wedge} m+n
\end{gathered}
$$

Where $\mathbf{a}, \mathbf{b}, \mathbf{c}, \ldots . \mathbf{n}$ are entered by users.
If they are treated as 0's if they are not entered.
This is a general equation that gives users flexibility in entering various forms of equations.
(. For example, to enter an equation of $\mathbf{1 / X}$, make $\mathbf{g}=\mathbf{1}$ and \mathbf{h} and $\mathbf{i}=\mathbf{1}$.

- The derivative of the above equation is solved by using the devision rule:

Number Conversion

(Convert a number from one base to another.
Following bases are supported: Base 2, Base 8, Base 10, Base 16.
■ To enter a number in a base:
Press the TAB key repeatedly until the blinking bar (cursor) appears on a desired base.

■ To clear all inputs:
Click on the "CLEAR" button.

- To close the window:

Click on the "CANCEL" button.

Trigonometry Equation

- Given an equation of the form

$$
F(x)=a\left[\text { Sine } / \text { Cos/Tan }\left(b x^{\wedge} c\right)\right]
$$

Where $\mathbf{a}, \mathbf{b}, \mathbf{c}$ are entered by users.
If they are not entered, they will be treated as 0s.
\square The equation is solved for Sine, Cosine, and Tan.
■ Options for plotting
Users have options for plotting of any combination of $\mathbf{3}$ Trigonometry equations.
■ Click on the Check Box button to select plotting options.
回 If the Check Box is checked, it means selected.

Crammer's Rule

[The matrix on the left is an unsolved system of equations.

- The matrix on the right is a solved system of equations.
- To select a number of variables for an equation:

Click on a radio button that specifies a desired number of variables.
2-Variables means solving a system of equations of the forms:

$$
\begin{aligned}
& a \times 1+b \times 2=c \\
& d \times 1+e x 2=f
\end{aligned}
$$

The matrix representation is:
$\left|\begin{array}{ll}\text { nnn } & \text { nnn } \\ \text { nnn } & \text { nnn } \\ \text { nnn } & \text { nnn }\end{array}\right|$

■ Determinants:
The number of determinants depends on the number of variables in the functions. Crammer's rule solves a system of equations by determinants. The determinants for the above system of 2-variable are:

There are 3 determinants for a system of 2-variable equations.

- View matrices for determinants

Click on the MATRIX button.
There are 3 matrices for a system of 2-variable equations.
One matrix for Determinant
One matrix for Determinant of X1
One matrix for Determinant of X2

Reduce a matrix using Gausian Technique

■ To select a size for a matrix:
Click on Number of Row or Number of Columns, a menu of predefined sizes is displayed.
Select a desired from the menu.
The Input Matrix and Result Matrix will change accordingly.
■ To enter data into the matrix:
Set the Cursor to one of the entries in the matrix by either pressing the TAB key or click on the entry.
If any data is entered, the Result matrix will be initialized to 0's.
To view the solution:
There are 2 ways of viewing the solution.
■ Click on the Result button which will display the Final solution on the Result matrtix.

- Click on the Step button.

This will display the process of solving the matrix by steps. Every click on the Step button will show the next step toward the solution of the matrix.

Finding the inverse of a matrix

- To select a size for the matrix

Click on the Down Arrow of the "Matrix Size", then select a desired size from the menu.
You will notice the matrices instantly change accordingly.
(To enter data into the matrix:
Set the Cursor to one of the entries in the matrix by either pressing the TAB key or click on the entry. If any data is entered, the Result matrix will be initialized to 0 's.

■ To view the solution of the inverse
There are 2 ways of viewing the solution.

- Click on the Result button which will display the Final solution on the Result matrtix.
- Click on the Step button.

This will display the process of finding the inverse of the matrix by step.
Every click on the Step button will show the next step toward the the solution of the matrix.

Find the equation of a line

(Finding the equation of a line using 2 points, point $1(\mathbf{X 1}, \mathbf{Y 1})$ and point2. (X2,Y2)

The equation of the form: $\quad F(x)=m X+B$
Where $\mathbf{m}=$ slope and $\mathbf{B}=\mathbf{Y}$-Intercept.
■ The Slope is computed as follows:

The \mathbf{Y}-Intercept is computed as follows:
Y-Intercept $=(-m * \mathbf{X 1}) / \mathbf{Y 1}$

- The Distance between 2 points is computed as shown below:

Distance $=[(Y 2-Y 1) 2+(X 2-X 1) 2] 1 / 2$

Linear Equation

(Given 2 linear equations of the form:
$\mathbf{f}(\mathbf{x})=\mathbf{m x}+\mathbf{b}$ and $\mathbf{g}(\mathbf{x})=\mathbf{a y}+\mathbf{d}$
For $F(X)=G(X)$, and let $F(\mathbf{x})=\mathbf{y}$, we have

$$
\begin{aligned}
& \mathbf{m x}+\mathbf{b}-\mathbf{d} \\
& \text { F(x) = -------------- }
\end{aligned}
$$

a
(- Given 2 linear equations of the form above $(\mathbf{F}(\mathbf{x})$),
the program will determine conditions of the equations according to the initial input value.

Matrix Operations

- Add, Subtract and Multiply 2 matrices.

回
Select matrix operation
Click on the Addition or Subtraction or Multiplication radio buttton to select the operation.
\square Matrix Addition and Subtraction requires the matrix \mathbf{A} and \mathbf{B} have the same size (ie, same number of rows as well as number of columns).

- Matrix Multiplication requires the number of columns of matrix A to be equal with the number of rows of matrix B.

■ Otherwise, the matrices cannot be computed with the selected operation.
\square To change the sizes of matrix \mathbf{A} or matrix \mathbf{B}
Click on the Down arrow next to the default size of the matrix. Then select a size from the menu.

Polynomial Intersection

- Determine whether 2 polynomials are intersected at a given point.

■ Given 2 equations of the form
$F 1(x)=a x^{\wedge} 3+b x^{\wedge} 2+c x+d$
$F 2(x)=a x^{\wedge} 3+b x^{\wedge} 2+c x+d$
■ Coefficients $\mathbf{a}, \mathbf{b}, \mathbf{c}, \mathbf{d}$ are supposed to be enterred.
If they are left blanks, their values are assumed to be 0's.
© How it works
The initial value \mathbf{X} is substituded in the equations to solve for $\mathbf{F}(\mathbf{x})$. If $\mathbf{F 1 (x)}=\mathbf{F 2 (x)}$ then, it means these 2 functions are intersected at the given point of \mathbf{X}.

Numerical Integration using Simpson's Rule

- Given an equation of the form:

$$
\begin{gathered}
a x^{\wedge} b+c x^{\wedge} d+e x^{\wedge} f+g \\
F(x)=--\cdots x^{\wedge}+j x^{\wedge} k+l x^{\wedge} m+n
\end{gathered}
$$

Where $\mathbf{a}, \mathbf{b}, \mathbf{c}, \ldots \mathbf{n}$ are entered by users.
If they are treated as 0's if they are not entered.
This is a general equation that gives users flexibility in entering various forms of equations.

■ For example, to enter an equation of $\mathbf{1} / \mathbf{X}$,
make $\mathbf{g}=\mathbf{1}$ and \mathbf{h} and $\mathbf{i}=\mathbf{1}$.

- Simpson's Algorithm approminating the graph of $\mathbf{F}(\mathbf{x})$.

Integration of $\mathbf{F}(\mathbf{x})$ from \mathbf{a} to \mathbf{b} :
b-a
$-----[f(X 0)+4 f(X 1)+2 f(X 2)+4 f(X 3]+\ldots+2 f(X n-2)+4 f(X n 1)+f(X n)$ 3n

■ Variable descriptions
n : Number of partitions between the limit \mathbf{a} and \mathbf{b}.
$\mathbf{X i}$: X value on the partition.
$\mathbf{F}(\mathbf{x i}): Y$ value at Xi .
m : can be 1,2, or 4. The coefficient of the Simpson's algorithm as : shown above.
Solution: is the final result of the Simpson's algorithm.

- To view a value at a partition

Click on the Down arrow of $\mathbf{X i}$ and select a desired parition.
The value for selected partition is displayed as $\mathbf{F}(\mathbf{x i})$ or $\mathbf{m F}(\mathbf{x i})$.

Numerical Integration using Trapezoidal Rule

■ Given an equation of the form:

$$
\begin{gathered}
a x^{\wedge} b+c x^{\wedge} d+e x^{\wedge} f+g \\
F(x)=--\cdots x^{\wedge} i+j x^{\wedge} k+l x^{\wedge} m+n
\end{gathered}
$$

Where $\mathbf{a}, \mathbf{b}, \mathbf{c}, \ldots \mathbf{n}$ are entered by users.
If they are treated as 0's if they are not entered.
This is a general equation that gives users flexibility in entering various forms of equations.

■ For example, to enter an equation of $\mathbf{1} / \mathbf{X}$,
make $\mathbf{g}=\mathbf{1}$ and \mathbf{h} and $\mathbf{i}=\mathbf{1}$.
\square Trapezoidal algorithm approminating the graph of $\mathbf{F}(\mathbf{x})$.
Integration of $\mathbf{F}(\mathbf{x})$ from \mathbf{a} to \mathbf{b} :
b-a
$------[f(X 0)+2 f(X 1)+2 f(X 2)+\ldots+2 f(X n-1)+f(X n)$
2n
■ Variable descriptions
n : Number of partitions between the limit \mathbf{a} and \mathbf{b}.
$\mathbf{X i}$: X value on the partition.
$\mathbf{F}(\mathbf{x i})$: Y value at Xi .
m : can be 1 or 2, The coefficient of the Trapezoidal algorithm as : shown above.
Solution: is the final result of the Trapezoidal algorithm.

■ Error Estimate for the Trapezoidal rule

The Maximum error using the Trapezoidal rule is NOT greater than
M(b-a\}^3/12n^2
Where \mathbf{M} is a positive real number such that $\mathbf{F}^{\prime \prime}(\mathbf{x})<\mathbf{M}$ for all x in [a..b].
Note: $\mathbf{F}^{\text {" }}$ is second derivative of $\mathrm{F}(\mathrm{x})$.

- To view a value at a partition

Click on the Down arrow of $\mathbf{X i}$ and select a desired parition.
The value for selected partition is displayed as $\mathbf{F}(\mathbf{x i})$ or $\mathbf{m F}(\mathbf{x i})$.

User-Defined Function

■ Given an equation of the form:

$$
\begin{gathered}
a x^{\wedge} b+c x^{\wedge} d+e x^{\wedge} f+g \\
F(x)=--\cdots x^{\wedge} i+j x^{\wedge} k+l x^{\wedge} m+n
\end{gathered}
$$

Where $\mathbf{a}, \mathbf{b}, \mathbf{c}, \ldots \mathbf{n}$ are entered by users.
If they are treated as 0's if they are not entered.
This is a general equation that gives users flexibility in entering various forms of equations.

■ For example, to enter an equation of $\mathbf{1} / \mathbf{X}$,
make $\mathbf{g}=\mathbf{1}$ and \mathbf{h} and $\mathbf{i}=\mathbf{1}$.

Graph Setup - default settings

[Scale Value for Zoom in and Zoom out:
Zoom in means making each unit in the function equal to \mathbf{x} number of units on the display device.
If the Scale value is 5 , then each function unit is equivalent to 5 units on the display.

Zoom out is opposit of the Zoom out. If the Scale value is 5 , then each unit on the display is equivalent to 5 units in the function.

- Scale Value for Draw Grid

The scale value of grid is based on the Scale Value for Zooming.
The Grid Scale = the Grid Scale Value times Zooming Scale Value.
If the Scale value for grid is 5 and the Scale Value for zomming in is 10 , the grid will be drawn for every 50 units on the display.

Quadratic Equation

■ Given an equation of the form
$a x^{\wedge} 2+b x+c=0$
Where $\mathbf{a}, \mathbf{b}, \mathbf{c}$ are entered by users
If \mathbf{a} or \mathbf{b} or \mathbf{c} is not entered, then it will be treated as 0 .
\square The equation is sovled by using
-
-If ($\mathbf{b}^{\wedge} \mathbf{2 - 4 a c}$) is less than 0 , the \mathbf{X} solutions will be imaginary because the square root of a nagative number is undefined.

■ Otherwise, the equation has 2 solutions ($\mathbf{X 1}, \mathbf{X 2}$).

